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Abstract— The large scale penetration of electric vehicles 

(EVs) will introduce technical challenges to the distribution grid, 

but also carries the potential for vehicle-to-grid services. Namely, 

if available in large enough numbers, EVs can be used as a 

distributed energy resource (DER) and their presence can 

influence optimal DER investment and scheduling decisions in 

microgrids. In this work, a novel EV fleet aggregator model is 
introduced in a stochastic formulation of DER-CAM [1], an 

optimization tool used to address DER investment and scheduling 

problems. This is used to assess the impact of EV 

interconnections on optimal DER solutions considering 

uncertainty in EV driving schedules. Optimization results 

indicate that EVs can have a significant impact on DER 

investments, particularly if considering short payback periods. 

Furthermore, results suggest that uncertainty in driving 

schedules carries little significance to total energy costs, which is 

corroborated by results obtained with the stochastic formulation 

of the problem. 

 
Index Terms— microgrids, uncertainty, electric vehicles, 

electric storage, distributed energy resources, driving patterns. 

I.  INTRODUCTION 

The definition of Distributed Energy Resources (DER) 

expands on the definition of Distributed Generation (DG) by 

including both storage and controllable loads. It carries all the 

potential benefits of DG, but also considers additional load 

shifting and demand response measures that add to the 

complexity of strategic DER investment and scheduling 

decisions in microgrids, particularly under uncertainty. New 

and emerging technologies add to this problem, and plug-in 

electric vehicles (EV) are a clear example. A large scale 

penetration of EVs in microgrids will introduce new 

technological challenges and add to electric loads, but will 

also carry a significant potential for ancillary services. Under 

this scenario EVs will be considered as a DER and must be 

considered in DER investment decisions. 

Vehicle-to-grid interactions (V2G) is a relatively new 

concept and is based on the principle that if a significantly 

high number of EVs is available at the grid it will not only 

have an impact on the loads, but will also have the potential to 

be used as a DER. A common approach to the interface 

between the EVs and the grid is the use of Aggregators, so that  
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the full V2G potential can be achieved and the EV fleet can be 

effectively integrated and managed [2]. The economic 

viability and business models of V2G technology have already 

been addressed [3], [4], and models have been presented 

regarding EV bidding and optimal charging strategies [5]. 

Some work has also been focused on the problem of optimally 

managing a microgrid including vehicle-to-grid interactions 

[6], [7], and in [8] a stochastic model was used to optimize the 

use of renewable sources to charge EVs. However, few studies 

address V2G benefits while analyzing DER investments at 

microgrids. 

Some studies have addressed DER investment and 

scheduling problems: An MILP model, DER-CAM, is 

described in [1], dealing with optimal DER investment and 

introducing the impact of carbon taxation in optimal 

investment decisions. A similar model is introduced in [9], 

dealing with DER investments in Japan. In [10], DER-CAM is 

used to address the investment and planning decisions of 

DERs in the presence of EVs as a deterministic optimization 

problem, while the EV fleet Aggregator model considers only 

a single driving schedule for the entire fleet and defines a 

typical year by 3 typical days of hourly loads per month.  

The work presented in this paper advances the state-of-the-

art of DER investment and scheduling problems by adding to 

the work presented in [11]. This is accomplished by proposing 

a novel stochastic programming formulation of the problem 

with a new EV fleet aggregator model and considering 

uncertainty in driving schedules. An updated version of DER-

CAM has been designed and is used for this purpose, where 

the typical year is defined using 7 typical days of hourly loads 

per month (a total of 84 typical days per year). The impact of 

EVs in DER investments is analyzed on a case study with 

technology costs and performance coefficients being 

forecasted for 2020, when it is expected that EVs will be 

widely available and V2G benefits within reach. 

The remainder of this paper is organized as follows: Section 

II introduces briefly DER-CAM and its main versions and past 

applications. Section III describes the EV fleet aggregator 

model proposed in this work and Section IV introduces the 

stochastic formulation of DER-CAM. Section V introduces 

the data used in the case study, and the optimization runs and 

main results obtained. In Section VI, the main conclusions are 

presented. 

II.  DER-CAM 

DER-CAM is a MILP model developed by the Lawrence 

Berkeley National Laboratory and used extensively to address 

the problem of optimally investing and scheduling DER under 

multiple settings. Its earliest development stages go back to 
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2000 [12], and stable versions can be accessed freely by the 

general public using a web interface [13]. Along with 
HOMER [14], formerly developed by the National Renewable 

Energy Laboratory, it is one of the few optimization tools of 
its kind that is available for public use. It has been 
continuously improved to incorporate new technologies and 

features, and used in several peer-reviewed publications [1], 
[15–17]. Recently, it has also been updated to incorporate EVs 

[11]. The key inputs in DER-CAM are customer loads, market 
tariffs including electric and natural gas prices, techno-
economic data of DG technologies including capital and 
operation and maintenance costs, electric efficiency, heat-to-

power ratio, sprint capacity, maximum operating hours, 
among others. Key outputs include energy costs, the optimal 
installed onsite capacity and dispatch of selected technologies, 

and demand response measures. 
Since the focus of this work is stochastic programming of 

the new aggregated EV interconnection model for the DER-
CAM to consider uncertainty in driving schedules, only the 

most relevant mathematical models are presented and the full 
mathematical model implemented in DER-CAM can be found 
in [1], [15–17]. 

III.  EV FLEET AGGREGATOR MODEL 

A new EV fleet model is proposed in this paper such that the 

EV fleet can be distributed between one of four states in each 
time step – at the microgrid, in traffic going home, in traffic to 

the microgrid, and at home – and all variables concerning EV 
operations are calculated explicitly in each time step, which 
also allows forcing continuity in the state of charge (SOC) in 
EVs between consecutive days. 

Additionally, the following assumptions were considered in 

the new aggregator model: 

• The non-dimensional time-dependent distribution of the 

EV fleet between different states is known; 

• Electricity used for driving is not considered in microgrid 
energy costs; 

• All cars charge at least enough electricity at home for an 
average daily roundtrip; 

• Electricity meant only for driving can also be used while 

cars are at the microgrid, but if so, it must be recharged 
by the microgrid; 

• When cars change state, the SOC of these cars is equal to 
the average SOC of cars in the departing state; 

• If cars transition between “Home” and “Traffic to 

microgrid”, the SOC of these cars is equal to the average 
SOC of cars at “Home”, plus the amount required for a 
daily roundtrip; 

• Electric vehicle charging and discharging strategies are 
defined by the microgrid cost minimization objective. 

A schematic representation of the aggregator model 
introduced is shown in Fig. 1. It must be noted that the total 
EV fleet dimension is a decision variable, as well as the 
electricity stored in each state and time step, and the electricity 

inputs and outputs both at home and at the microgrid. 
Conversely, the share of cars in each state is known and given 
by a time-dependent discrete distribution, as well as the share 

of cars transitioning between two states. As total EV fleet 
capacity is determined, so are the electricity needs for driving. 

The electricity transferred between states is determined given 
total capacity and the SOC in each state and each time step.  

A.  Mathematical Formulation 

The detailed EV fleet aggregator mathematical formulation is 
described as follows: 
    1)  Indices 

c : set of continuous generation technologies: photovoltaic 
panels (PV), solar thermal panels (ST), and absorption 

chillers (AS). 

h : hour {1,2,...,24} 

k : set of storage technologies: Electric Vehicles (EV), 

stationary storage (ES), and thermal storage (TH). 

m:  month {1,2,...,12}. 

t : day of week {1,2,...7}. 

ω : scenario {1,2,...,Ω}. 
    2)  Fleet distribution parameters 

EVH
ω,�,�,�:  share of total EV fleet that is at home in scenario 

ω, month m, day t, and during hour h. 

EVTU
ω,�,�,�: share of total EV fleet that is in traffic towards 

the microgrid in scenario ω, month m, day t, and during 
hour h. 

EVU�,�,�,�: share of total EV fleet that is at the micro-grid in 

scenario ω, month m, day t, and during hour h. 

EVTH�,�,�,�:  share of total EV fleet that is in traffic towards 

home in scenario ω, month m, day t, and during hour h. 

EVT2H�,�,�,�:  share of total EV fleet that arrived home from 

traffic in scenario ω, month m, day t, and during hour h. 

EVH2T�,�,�,�:  share of total EV fleet that left home to traffic 

in scenario ω, month m, day t, and during hour h. 

EVT2U�,�,�,�:  share of total EV fleet that arrived the micro-

grid from traffic in scenario ω, month m, day t, and during 
hour h. 

EVU2T�,�,�,�:  share of total EV fleet that left the micro-grid 

to traffic in scenario ω, month m, day t, and during hour h. 
In order to ensure continuity the following conditions are 

imposed to the fleet distribution parameters: 

EVH�,�,�,� � EVH�,�,�,��� � EVT2H�,�,�,� � EVH2T�,�,�,�,						∀	ω,m, t, h (1)

EVTU�,�,�,� � EVTU�,�,�,��� � EVH2T�,�,�,� � EVT2U�,�,�,� , ∀	ω,m, t, h (2)

EVTH�,�,�,� � EVTH�,�,�,��� � EVU2T�,�,�,� � EVT2H�,�,�,�, ∀	ω,m, t, h (3)

EVU�,�,�,� � EVU�,�,�,��� � EVT2U�,�,�,� � EVU2T�,�,�,�,						∀	ω, m, t, h (4)

These equations state that in any given scenario, month and 
day, the share of the total EV fleet in any state and given hour 
is equal to the share of that state in the previous hour, added 

 
Fig. 1. Schematic diagram of EV aggregator model. 
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with the share of cars that arrived to that state and subtracted 

with the share of cars that left it during that hour. 

    3)  Storage parameters 

SCRate� maximum charge rate of storage technology k. 

SDCRate� maximum discharge rate of storage technology k. 

SOC� maximum state of charge of storage technology k. 

SOC� minimum state of charge of storage technology k. 

φ�  losses  self-discharge in storage technology k. 

EVBat  average storage capacity per car (kWh). 

EVDC  electricity consumed for driving per car and per 

hour (kWh). 

TotPS total available parking space for EVs (m2). 

PSCar parking space required per EV (m2). 

    4)  Decision Variables 

���(�,�) : installed capacity of continuous generation 

technology c or storage technology k (kW or kWh). 

����ℎ�,�,�,�: electricity stored in EVs at home in scenario ω, 

month m, day t, and during hour h (kWh). 

�������,�,�,�: electricity stored in EVs in traffic towards the 

microgrid in scenario ω, month m, day t, and 

during hour h (kWh). 

�����ℎ�,�,�,�: electricity stored in EVs in traffic towards 

home in scenario ω, month m, day t, and during 

hour h (kWh). 

������,�,�,�: electricity stored in EVs at microgrid in scenario 

ω, month m, day t, and during hour h (kWh). 

�	��ℎ�,�,�,�: electricity input to EVs at home in scenario ω, 

month m, day t, and during hour h (kWh). 

�
��ℎ�,�,�,�: electricity output from EVs at home in scenario 

ω, month m, day t, and during hour h (kWh). 

������,�,�,�,�: energy input from the microgrid in scenario 

ω, to storage technology k, , month m, day t, and 

during hour h (kWh). 

��������,�,�,�,�,�: energy output to the microgrid in scenario 

ω, from storage technology k, month m, day t, and 

during hour h for end use u (kWh). 

��	
��ℎ�,�,�,�: binary charge/discharge decision for EVs at 

home in scenario ω, month m, day t, and hour h. 

��	
��,�,�,�,�:  binary charge/discharge decision at the 

microgrid in scenario ω, storage technology k, 

month m, day t, and during hour h. 

B.  EV Aggregator Constraints 

The mathematical model of an EV aggregator is developed as 

the following set of constraints:  
����ℎ�,�,�,� =

�����ℎ�,�,�,��� ∙ �1 −
��	
��,�,�,�

��	�,�,�,���

� + �����ℎ�,�,�,��� ∙

���
	�,�,�,�

���	�,�,�,���

� ∙ �1 − φ�� + �	��ℎ�,�,�,� − �
��ℎ�,�,�,�

 (5) 

�����ℎ�,�,�,� = ������ℎ�,�,�,��� ∙ �1 −
���
	�,�,�,�

���	�,�,�,���

� +

������,�,�,��� ∙
��
��,�,�,�

���,�,�,���

� ∙ �1 − φ�� −

EVT2H�,�,�,� ∙
����

�����
∙ EVDC    (6) 

�������,�,�,� = ��������,�,�,��� ∙ �1 −
���
�,�,�,�

����,�,�,���

� +

����ℎ�,�,�,��� ∙
��	
��,�,�,�

��	�,�,�,���

� ∙ �1 − φ��  +

�∑ EVTU�,�,�,� + EVTH�,�,�,��� ∙
��	
��,�,�,�

∑ ��	
��,�,�,��

−

EVT2U�,�,�,�� ∙
����

�����
∙ EVDC   (7) 

������,�,�,� =

�������,�,�,��� ∙ �1 −
��
��,�,�,�

���,�,�,���

� + �������,�,�,��� ∙

���
�,�,�

����,�,���

� ∙ �1 − φ�� + �������,�,�,�,� −

��������,�,�,�,�    (8) 

In this model, constraints (5)-(8) describe how energy is 

transferred between different states, including all charging and 

discharging decisions both at home and at the microgrid. For 

instance, Constraint (5) states that the in each scenario, month 

and day, the electricity in cars parked at home in any given 

hour is equal to the electricity in cars parked at home in the 

previous hour, minus the electricity in cars that went into 

traffic, plus the electricity in cars that arrived from traffic, plus 

the electricity from charging at home, minus the electricity 

from discharging at home during that hour. Constraints (6) and 

(7) are similar, but also include energy needs for driving.  

EVH�,�,�,� ∙ SOC� ∙ ���� ≤ ����ℎ�,�,�,� ≤ EVH�,�,�,� ∙ SOC � ∙ ���� (9) 

EVTU�,�,�,� ∙ SOC� ∙ ���� ≤ �������,�,�,� ≤ EVTU�,�,�,� ∙ SOC � ∙ ���� (10) 

EVTH�,�,�,� ∙ SOC� ∙ cap� ≤ esevth�,�,�,� ≤ EVTH�,�,�,� ∙ SOC � ∙ cap� (11) 

EVU�,�,�,� ∙ SOC� ∙ cap� ≤ esevu�,�,�,� ≤ EVU�,�,�,� ∙ SOC� ∙ cap� (12) 

�	��ℎ�,�,�,� ≤ EVH�,�,�,� ∙ ����  ∙ SCRate� (13) 

�
��ℎ�,�,�,� ≤ EVH�,�,�,� ∙ ����  ∙ SDCRate� (14) 

������,�,�,�,� ≤ EVU�,�,�,� ∙ ����  ∙ SCRate� (15) 

���������,�,�,�,�,�

�

≤ EVU�,�,�,� ∙ ����  ∙ SDCRate� (16) 

�	��ℎ�,�,�,� ≤ ��	
��ℎ�,�,�,� ∙ � (17) 

�
��ℎ�,�,�,� ≤ �1 − ��	
��ℎ�,�,�,�� ∙ � (18) 

������,�,�,�,� ≤ ��	
��,�,�,�,� ∙ � (19) 

��������,�,�,�,� ≤ �1 − ��	
��,�,�,�,�� ∙ � (20) 

���� ≤
TotPS

PSCar
∙ EVBat ∶ k = {EV} (21) 

The maximum and minimum state of charge conditions are 

imposed by Eqs. (9)-(12), while Eqs. (13)-(16) set the 

maximum and minimum charge and discharge rates. Eqs. 

(17)-(20) ensure that charging and discharging cannot occur 

simultaneously, either at home or at the microgrid using 

binary variables and an arbitrary large quantity, �. Finally, 

Eq. (21) sets the maximum EV capacity according to the 

available parking space 

IV.  STOCHASTIC FORMULATION  

To date, only deterministic methods had been implemented in 

the DER-CAM. In this work, a stochastic formulation was 

implemented, already taking into account the EV fleet 

aggregator model described in the previous section. The 
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nomenclature used follows previous descriptions of the DER-

CAM formulation [1]. Given the nature of DER-CAM, the 

stochastic formulation implemented and presented here is 

valid for the full economic objective function of the model, 

although the actual formulation and model options are adapted 

to each case study. For instance, in the work presented here no 

electricity sales were considered, thus the corresponding 

equations and variables were disabled or forced to zero. 

The generic mathematical formulation of the two-stage 

stochastic DER-CAM is as follows: 

 min        c	x + ∑ π
ω

q
ω

	y
ω

Ω
ω
�  

 s. t.        ∑ ��� ≤ ��  

               ∑ V�ωx�� + ∑ W�ωy
ω�� ≤ h

ω
  ω ∈ {1,2, . . . , Ω} 

(22) 

where the economic objective function minimize total 

expected energy costs, consisting of the first and second stage 

problem objectives. The first-stage objective function, c	x, 
includes annualized DER investment costs. The second stage 

objective, ∑ π
ω

q
ω

	y
ω

Ω
ω
� , consists of facilities and customer 

charges, monthly demand charges, coincident demand 

charges, energy charges inclusive of carbon taxation, demand 

response measures and electricity sales in all scenarios. In 

addition, on-site generation fuel and O&M costs, carbon 

taxation on on-site generation, and natural gas used to meet 

heating loads are included in the second stage objective 

function. The investment variables, such as the type and size 

of adapted technologies, are the first stage decision variables. 

Daily operational variables of the selected technologies are the 

second stage variables of the two-stage stochastic problem. 

V.  CASE STUDIES 

A.  Input Data 

The EV fleet Aggregator and stochastic implementation of 

DER-CAM introduced in this work has been tested by using 

detailed energy simulation loads of a medium office building 

located in San Francisco, as described in the California End-

Use Survey (CEUS) database. The set of DER technologies 

considered  in this study includes internal combustion engines 

(ICE), micro turbine (MT), gas turbine (GT), fuel cells (FC), 

heat exchangers (HX), absorption chillers (AC), stationary 

electricity storage (ES), solar PV, solar thermal panels (ST), 

and EVs. The costs and performance indicators of the DER 

technologies considered in this work can be found in [1], [15–

17]. EVs and storage parameters are presented in Table I and 

Table II. The electricity tariff considered in this work is E-19 

TOU (Time-of-use) tariff applied in the Pacific Gas & Electric 

service territory for buildings with electric peak loads over 

200 kW and less than 499 kW [18]. 

B.  Driving Schedules 

The driving schedules used in this work were obtained from a 

2009 US Commuting Survey [19]. This survey contains a 

detailed distribution of the departure time of employees 

commuting to work in the morning and back in the evening. In 

this work, it was assumed that the average travel time would 

be 1 h. In addition, it was assumed that the average time spent 

at the microgrid site was 8 h and that the departure distribution 

on the way back home was the same as the departure 

distribution going to work. The resulting fleet departure 

distribution is illustrated in Fig. 2.  

Considering this departure distribution, (1)-(4) were solved 

to obtain the complete fleet distribution schedule used in this 

work. Three driving schedules were obtained solving these 

equations while maximizing the number of cars at home, 

maximizing the number of cars at the microgrid and 

calculating an average of the later. These driving schedules 

correspond to Scenarios 1, 3 and 2, respectively, and are 

presented in Fig. 3.  

C.  Simulation Results 

The model presented in this paper was run using 4 parallel 

CPU threads on a 256 GB RAM server running GAMS 23.0.2 

and CPLEX 11.2.1. Table III presents a summary of the 

simulation case studies presented here, and the key investment 

results obtained in the optimization runs are shown in Table 

IV. By inclusion of EVs in the set of available technologies, 

the model selects EVs which results in reductions in total 

energy costs and an increase in CO2 emissions as compared to 

TABLE I - STORAGE PARAMETERS (DIMENSIONLESS) 

stationary electric storage EV batteries 

charging efficiency 0.90 0.90 
discharging efficiency 0.90 0.90 
self-discharge per hour 0.001 0.001 
maximum charge rate 0.30 0.45 
maximum discharge rate 0.30 0.45 
minimum state of charge 0.30 0.20 

TABLE II - EV PARAMETERS 
Average battery size (kWh) 23.75 
Battery replacement cost in 2020 ($/kWh) 200 
Hourly driving consumption (kWh) 4.2 
Infrastructure investment cost per car ($) 1000 
Total parking space at microgrid (m2) 16200 
Parking space per car (m2) 15 

 
Fig. 2. EVs arrival and departure distributions. 

 

 

 
Fig. 3. Driving schedule scenarios. 
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the no EVs case, resulting from charging and discharging 
loses and the marginal CO2 emissions during preferential 
charging hours, as presented in Fig. 4. Observe that the 
optimal mix of the adapted technologies obtained from solving 

the problem for each scenario individually is different from 
the ones obtained from the stochastic modeling formulation. 

Using the stochastic model for all the scenarios together 
promotes, in addition to the investment in EV charging 
stations, the selection of solar thermal and larger PV 

generation compared to the investment in ICE/EX with 
smaller PV generation for solving the scenarios independently. 

Notice that in the 5yr payback case the maximum possible 
EVs capacity is selected while in the 12yr payback this is not 
the case. Worthy to mention that because of the lower capital 
costs of investing in EVs for the microgrid, EV storage is used 

rather than ES. 
The dispatch of the microgrid components for a summer 

week is shown in Fig. 5. Notice the potential of EVs for V2G 

services by allowing effective peak shaving by charging the 
cars at home and using the stored electricity at the microgrid, 

as shown in Fig. 6. 
In general, the results suggest that in a high payback 

scenario, EVs show a lower impact on the total energy costs 
and DER investment decisions, as other technologies gain a 

higher weight. Also, considering uncertainty in EV driving 
schedules has little impact on total energy costs, which can 

result from the flexibility provided both by the large amount 
of EV capacity and the additional installation of local 
generation (EPVI = $1063 in 12 year paybacks). 

VI.  CONCLUSIONS 

Optimal sizing and scheduling of DER capacity at a given site, 
considering the potential effect of electric vehicles and 

uncertainty in driving schedules were investigated. A novel 
EV fleet aggregator model was introduced and stochastic 
formulation was added to DER-CAM, a widely used 

deterministic model in DER sizing and scheduling problems. 
The presented aggregator model presented is based on a time-

dependent fleet distribution that considers four different fleet 

states and transitions between them. The model is then used to 

analyze the case study of a medium office building located in 
San Francisco, and real driving departure data are used to 

analyze the impact of EV driving schedule uncertainty in the 
DER investment decision. 
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Fig. 4. Deviation of marginal macrogrid CO2 levels from monthly average. 

 
Fig. 5. Microgrid electric dispatch for August. 

 
Fig. 6. Electricity stored in the entire EV fleet. Tuesday in August. 
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